Not-For-Publication Appendix for “A Political Theory of Pop-
ulism”: Proofs
The following Lemma clarifies the role and consequences of Assumption 1.
Lemma 1 Suppose that Assumption 1 holds. Then:
1. f(x)<m<%andf(x)<ﬁ<%.
21 (@) < it

Proof of Lemma 1. Part 1. We have

b 5b 5b° 54ab® 5 5\ ab?
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Part 2. For a normal distribution, max |f’ (x)| is obtained at z = +o¢ and equals ot

Assumption 1 implies
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Proof of Proposition 1. Proved in the text. m

Proof of Proposition 2. Part 1. We first prove existence. Consider equation (17). For
p = 0, the left-hand side is negative, and for p high it is positive, hence there is a positive
solution p > 0. By taking h = —p and then ¢ from (A2), we find that there is a solution (h, ¢) to
the system (15)—(16). Then h and c¢ constitute best responses in problems (11) and (13) as the



maximands are concave. Indeed, differentiating (12) and (14) yields, respectively (using Lemma

1):
—2q + <W+(1—u)a<aibﬁ>2> f’(hz_c—x>

W 5/4 3
—2 — ) <= 0; and
< oz+oz<a+ )(W/a)+b2< 4a< ; an

—2(a+p) + <W+(1—u)a<oﬁb6>2+(x+u—ux) <f?;—K>>f’<h;C—x>

5/4 32D 5/4
(W/a) +b2  a+p(W/a)+ b2

< —2(04—1—5)—1—04(2/—1-192)

5 )
< —2(a+6)+1a+1ﬂ<0.

It remains to prove that corrupt politicians and the lobby are better off with bribing, i.e.,
the gain from bribing is high enough. To do this, take the h and ¢ that solve (15)—(16) and let
¢ be the policy that the corrupt type would choose on his own in period 1 (yet anticipating a

bribe in period 2). This ¢ would solve the problem, taking 7 (x) as given by (10):

r?gﬂé({—axu <W+x (fjf; —K>> m (@) — (1—p) (a <Oﬁbﬁ>2> (1 _m;))}, (A1)

and since there is an extra term in this expression relative to (11) (coming from the corrupt

politician’s surplus from a bribe), he would choose ¢ < h. Denote the joint expected utility
of the lobby and the corrupt politician if policy x is chosen by W (x); we need to prove that
Wi(e)—W(e) > K.

Let n = ¢+ %. Then W (¢) > W (n) as ¢ maximizes W (z). Now, using the fact that
m (&) = m(n) < (n— &) sup,epan f () < 55F(0), we get

Wn)-WE) —K = —an*=Bn—-0°+a+B@E-b>—(H+R) (7@ —7(n) - K
Bb _ . pb .
= a—{—ﬁ<2l8b_(a+6)<20+a+ﬁ>>_(H+R)(7T(C)_7T(n))_K
52()2
= —2Bb6+<a+B—K>(1—(x+u—ux)(7r(é)—Tr(n)))—H(w(é)—w(n»
> —QBbh—HOfrbﬂf(O)
- an(5) -
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Denote A = ¢ — h. It suffices to prove that ! (fA(({)Q) > o%ﬁ’ which is equivalent to ﬁ—j <
81In (1 + g) Notice that A satisfies

_ . pb __h BH — aR
A== ys) (a+/3)< H ) (42)
Using (A2),
_ __pb R BH —aR B B 26b
azeh= s Gam (T r ) <as P <ass

where we used that p = —h < b. Then, from (12),

L2 2

1
—h 2afo<2> < %(W—i—alﬂ) b ((W/ab?) T 1) <b.

Now, using o > b we get % < 20%3, SO ?—22 < 4%. The result follows as 4% < 8In(1+ )
for all positive z, which completes the existence part.

We next prove uniqueness. Doing so within the class of equilibria with bribing in the first
period where h < ¢ is trivial: this follows from that in (12), ¢ is increasing in h, and in (14), ¢
is decreasing in h. Therefore, we need to rule out other possibilities.

If there is bribing and h = ¢, then citizens are indifferent between the incumbent and the
challenger. In this case, by assumption, they vote for the incumbent, the incumbent is sure
to win, and therefore can choose any policy, but this would imply that honest ones choose 0

b

and corrupt ones choose aip which contradicts h = ¢. Finally, consider the case h > ¢. Then
h+c

citizens reelect the incumbent if and only if s > =3

7T(:E)=PI‘<ZL‘+ZZ h_2{_6> :1—F<h_2|—c—:c> :F<x—h_2|_c>.

Honest politicians would solve (11) and dishonest politicians (with the lobby) would solve (13);

, and the probability of the reelection is

since honest ones choose h over ¢ and corruptible do the opposite, we have

—ah2+HF(h;C> > —047"2—|—H<1—F<h;c>>;

—ar?—B(c—b)2+ (H + R) <1—F<h;0>) —ah2—ﬁ(h—b)2+(H+R)F<h;C>.

Y




Adding these inequalities and simplifying, we obtain

(h—@2—@—bfzj%@F<h2c>—l>.

The right-hand side is positive due to h > ¢, which, together with A > ¢, implies h > b. The

policy choice h must satisfy the following first-order condition:

—&ﬂw%Hf(h;c>:0.

If h > b, then

h—c 2ab 2b B 2
f<2>>H'><mqay+W"b«mqawy+n’

but this contradicts Lemma 1. Therefore, there is no other equilibria with bribing.

To rule out equilibria without bribing in the first period, consider the following cases. Sup-
pose h < ¢, then again the incumbent is reelected iff s < % But we argued above that without
bribing in the first period, the corrupt politician wants to be reelected more (he expects to be
bribed in the second), and thus he must choose ¢ < h, which contradicts h < c¢. A similar
contradiction follows when we start with the hypothesis that ¢ < h. Finally, if h = ¢, then the
incumbent is reelected anyway, in which case it is optimal for the corrupt politician and the
lobby to engage in corruption and choose % > 0 which an honest politician would choose,
again a contradiction. This completes the proof of uniqueness of an equilibrium if (5) holds.

If (5) does not hold, then the citizens are indifferent between all politicians, and thus reelect
the incumbent for sure. Hence, the first-period problems of both politicians’s types and SIG are
identical to their second-period problems, and therefore there is no corruption either.

Part 2. This follows immediately from (15).

Part 3. This is established as part of the proof of Part 1. m

Proof of Proposition 3. We first need to prove that for small W, ¢ < %ﬁb. The bias q is
given by (18). If W is small, then

H+R = Wwﬂl—ma<am)>{Hx+u—ww<6%2—K>

+ 8 a+p
Bb \? | B 287 2
< a(Oé'f—,@) +a+ﬁ<a+ﬁ<25b'
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Hence,

1 22 2 pb Bb
2(04—1-[3)256%_ <

5a+8 a+f
Suppose now that W > 4ab?. Take 0 = %b’ then Assumption 1 holds, and thus

q <

2
(H+R) rge 307,

1
1= 50@+h)

Now, A = ¢ — h is bounded by b, so the exponent is close to 1 for W (and thus o) large. The

ratio % tends to 4ab as W increases. Consequently, for any € > 0 we can find W large enough

so that
S(—e) 1 dah
1 2(a+p8)  Vor
which exceeds T,B’ if ¢ is sufficiently small and & 5> 3 > f . m

Proof of Proposition 4. Part 1. Define
Bb P <ﬁH - ozR>)
P s My M 7b7 W7 Ka = 2 - H + ’
(a, B, 1, X p) ap f(2(a+5) 1CEY) i

where H and R are defined in the text. Since the argument of f is positive and thus f’ is

negative, we have

oP _ _ BH-—aR, . BH —
% = 2 aars’ O 2 MO
a  pA? 5/4 5
> 2o 2(a+ﬂ)a+B(W/a)+b2>2a_§a>0’
0Q BH —aR , . BH —aR |,
9 2(a+5)*Tf (‘)—2(a+5)+T|f ()‘
1 %2 5/4 5
> 2(a+ﬁ)_25+ﬂ(W/a/)—|—b2 2(a+ﬁ)—§(a+ﬁ)>0

Now we differentiate P and @) with respect to W. Using (17), we have

or . apR R f()

o = 1O smrar, O=F0- 55570
521)2 f() /
SO R by tMOR
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which implies j—V’[’, = —g—vli, %—1; > 0. Similarly, using (18), we have

99 _

S CRE e T ACEEVICEE S O

2 2a

and hence, j—v‘{, > 0.
Part 2. Differentiate P and Q) with respect to K. We have

or poalx+tu—px)\ g

e e e FCRY)

B, H

8% = (X+M—MX)f(‘)—<2qaM(X‘Fﬂ—ﬂx))f(‘)>0>
soj—ﬁ<0andf—f{<0.

Part 3. Differentiate P and ) with respect to :

5 = (e oo () oo
52 - (K)o (5 0 () oo

therefore, g—i > 0 and j—;’( > 0.
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Part 4. Differentiate P and ) with respect to u. We have

o = a2 >2f() o (5 R/H)) ()

o a+p 2+ p)  dp

- e 8b \2 (1=x) (5 W+(1—M)a<aﬁ—b)2 »

B f()( (a+ﬁ> ( x++z MX)E%K)a(ﬁBSz >)}f())
SUACOE 4<a1@(ﬁib;( o)) e () ) )
> 10 (“(aibﬁy_ T (Zo‘fibfiaffﬂ)) - Z“')“<aﬁ+bﬁ>2 -0

BH—aR

2 - <a<aib/8>2—(1—x)<fib;—K>>f(-)—(H+R) (;W) e
NRESRE
—igii(RO‘(aiﬁb)Q*H“‘”( et >>‘f .
Lf7(A/2)] A

We thus have d—p < 0, while the sign of may be ambiguous. Now, the ratio FARD) = 207

Let us prove that

Bb \2 522 g a+f 3 2 2, A
(25 -0 (28 o () w0 ()

(A3)

is increasing in . This is obviously true for the first term. Next,

d(Ra(Ofrﬁb)Q—l—H(l—X)(aB-wa )): (1—u)< L K>a<6b>2

dx + 4 a+p
5NN (B
- <W+(1_M)a(a+,6b)><a+ﬂb —K><O.

Finally, we prove that A = ¢ — h is decreasing in x. To do so, we can combine (15) and (16) to

find the equation on the equilibrium value of A:

2a((oz+,6’)A—bB)—(H/B—Roz)f<§> = 0.
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The left-hand side of this expression is increasing in A, since

2
a(a§)+ 5 (H5 - Ra)|/'()] > 2a(a+p) - 3L eI

1 1602 + 1158% + 3203
= 3° a+p

> 0.

It is also increasing in x, because R is increasing in x. Hence, % < 0. This proves that the
second term in (A3) decreases in absolute value (and it is positive), hence, (A3) is increasing in
X. Therefore, % may be positive only for x above some threshold, and may be negative only

for x below some threshold. This shows that > 0 for x < x and < 0 for x > x for some
X =

Proof of Proposition 5. Part 1. Differentiate P with respect to b. We have

= e () e n (2D B

a+ B 2(a+p3) 2(a+p
- —2(1—ﬂ)a<oﬁﬁ>2bf(')

(o () (0055 )
< 2(1u)a<aiﬂ>25f(')+ﬁ<w+( (a+6)(ﬂﬁ >

To show that it is negative, it suffices to show that the following is positive:

4(1_ﬂ)a(afﬁ>b— <W+(1—u)a<ai6b>2) 2§2.

In the proof of Proposition 2, we showed that é < 2-t— hence it suffices to prove that

a—l—ﬁ’

2
4(1—p)ab— (W—l—(l—u)a(af_ﬂb) )i

Since o > b by Assumption 1, this expression is unambiguously positive for W small. For such

W, %ij < 0, and thus dp > 0.
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Part 2. P and @ depend on ¢ only through f (%) L 06_8%. We have

This is negative, since ¢ > b > % (the last inequality was proved in the proof of Proposition
2). Consequently, f (%) is decreasing in o, and thus g—f > 0 and % > 0. Hence, g—g < 0 and

dq
%<0 | ]

Proof of Proposition 6.

Suppose that K increases to gQ—er;. This implies that the payoff of the lobby in the second

period approaches —3b? (honest politicians choose x5 = 0, and the lobby’s utility from corrupt
politicians is only marginally higher than it would be if bribing does not happen and the politician
chooses 0). Now, we showed in the proof of Proposition 2 that in the first period, honest

politicians would be populist, and corrupt politicians would choose ¢ < h if bribing fails (threat

BQbQ
a+3?

the first-period utility of the lobby is in this case worse than if bribing was impossible. The

point); moreover, as K — p remains bounded away from 0, as follows from (17). Hence,

exact same argument also applies when x increases to 1. m

Proof of Proposition 7. Let us denote the probability of having an honest politician in the
second period (without term limits) by A. Notice that the equilibrium probability of reelection

of an honest politician is F' (Cgh), and the probability of reelection of a right-wing politician is

F(h5e) =1-F (5t

s (52 o (5 o (1)
(ersr(3)
s (50

Intuitively, the politician in the second period is honest if (a) an honest politician is reelected,

) . Consequently,

(b) honest politician is not reelected, but another honest one comes instead, and (c¢) corruptible

politician is replaced by an honest one. Therefore, without (hard) term limits social welfare is

V= —ph?—(1—p)c®—(1—p) (1—M<2F (c;h> _1)> <ai6b>2’
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and social welfare with term limits is

We therefore have

V”—Vtz—ﬂhz—(l—u)CQJr(l—u)(1+u<2F( ;h> 1>)<aﬁﬁb>2. (Ad)

First we show that this expression is strictly increasing in W starting from W = 0, which

will establish that for W sufficiently close to 0, an increase in W makes term limits less likely

to increase social welfare. Differentiating with respect to W, we have

(vr—vt) dh de —h B N\*(de dh
dW__QMhW_Q(l M)CW+< ),uf( )(a—i—ﬁb) <dVV_dT/V)

2
When W = 0, (15) implies that (1 — u) f (Cgh) ( 8 b) = —2h. Substituting for this, we have

a+p8
(Vvr—vt) dh dc dc  dh
L = oph— —2(1 = p) e — 2ph [ = — ——
W iy — 2= eg (dW dW)
dc
= —2c——.
Caw

From Proposition 4, -2 aw < 0, and moreover, when W = 0, ¢ > 0 which establishes the desired
result.
We next show that for u close to 1, the comparison of term limits to no term limits depends

on whether W > 0. Recall that p = |h| and A = ¢ — h, and rewrite (A4) as

V=Vt = —pp? — (1 — ) (A —p)* + (1 — p) (1+u<2F(§>—1>> <af_ﬁb>2. (A5)

Notice that (17) implies that as 4 — 1, p tends to the solution of the equation

p= 5 <2(aﬁ+6)b+2(ap+ﬁ) <5_< ﬁjﬁ d K)))
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which is positive and unique, in the case W > 0. If W = 0, then p tends to 0, and in such a

way that % tends to a solution to

p 1/ B\ B . 1 p [ K(a+§)
21 (55) e (55 )

which is finite and positive. In either case, A tends to the solution of

o3 25)- (o301} ()

which is unique and positive (indeed, if A = 0, then left-hand side is —2a(b, and the right-hand

side is at least fa%lﬂ% = *20&5[)0/%/8.
These results already imply that if W > 0, then for p sufficiently close to 1, (A5) is negative.
Suppose that W = 0. To get that (A5) is positive, it suffices to prove that

—(A—p)2+<1+,u<2F<§>—1)> <aiﬂb>2>0 (A6)

However, this exceeds

<af_56>2—(A—p)2: (Oﬁﬂ—(A—p>> <aiﬁ+A+p)-

But since A —p = cand ¢ < aLJiﬁb’ (A6) is unambiguously positive, and thus so it is (A5H)

provided that W > 0 and p sufficiently close to 1. m

Proof of Proposition 8.
Proceeding as in Section 3, we find the following equilibrium conditions on the first-period

policy choices of the two types of politicians:

S 1
—2ah—Hf(C2 - n"h) — 0,
-

—20c—28(c—b)— (H+R) f (h;C _020111”}1) _—

For a normal distribution,
c—h 5 Inn h—c o Inm\
f< 2 ac—h>/f< 2 “e—n)" "
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and this allows us to obtain the condition for the equilibrium value of A:

)

a+p 2c0(a+ B)n 2 7 A

One can check that derivative of the right-hand side with respect to A is bounded away from 1
uniformly in 7, provided that ¢ is high enough; this implies the existence and uniqueness of an

equilibrium. The condition for the populist bias, p = |h|, is now the following:

B_p H(a—(a+5)?7)+Rap

atp” Hn(a+p) 2 In7 _
2ap— Hf 5 -0 5, Aa-(aiifa = 0. (AT)
a+p Hn(o+B)

Let us rewrite this as A (p,n) = 0, and study %.

Our first observation is that p — 0 as ¢ — oo uniformly in 7; indeed, (A7) implies

H 1

W2ra o

p <

Moreover, the same is true for 2, and we have 1 f (% — 021M> =f (% + 02111—77) for any z, and
n n T T

therefore
P H 1

< ——.
n 2V 2t o

We can thus pick o large enough, so that aLJiBb — H(Q;I(Z(Jgﬁ_)gngRap € (%O%ﬁb, %a’%ﬂb)

Differentiating A with respect to p establishes that it is an increasing function. In particular,

%ZQQ_HjH(OK—(Ot-FB)??)—FRa %+0'2]n17 f(z)

ap o HT, (a + /B) (%ﬁb — H(a;{(a(—i-i)gg-l-Rap) 2 ’
a (o

where
_B_p _ Hla—(a4B)n)+Ra :
o a+f Hn(a+p) _ 2 nmn
2 B _ Hla—(a+B)n)+Ra *

a+p Hn(a+B) p

But f(z) < kge_(ln "* for some constant k and o large enough, and this implies that % tends

to 2a uniformly in 7 as o becomes larger (and thus it is also bounded away from 0).
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Let us now show that z is decreasing in 7 (this will enable us to study how A depends on

n). We have

9z 1a(H+R)p Hn (a+ B) 1 a(H+R)p >

on  2H (a+B)n? “ﬁan—<H<a—<a+ﬁ>n>+Ra>pn(_ﬁan—<H<a—<a+ﬁ>n>+Ra>p

Multiplying both sides by 1 and using that p and p/n will be arbitrarily small for large o, we
notice that only the second term will matter, and it will be negative. Hence, z is decreasing in

n.

The previous result implies that 8‘4

<0if z>0 and aA > 0 if z < 0. This, in turn, means
that % >0if z > 0and % >0if z < 0. We have already shown that for a fixed p, z is decreasing
in 1. To complete the proof, we need to show that if p is given by (A7), then g—f} can only change
its sign from positive to negative as 7 increases. Indeed, suppose, to obtain a contradiction, that
Q changes its 51gn from negative to positive at some 7. Then at this 7, we must have %7 =
and therefore £ = (. But this means that even though p varies in the neighborhood of 7, this
does not contr1bute to 8—;, and it is still negative. However, this contradicts our assertion, and
therefore 2 877 can only change its sign from positive to negative.

Notice that for 7 close to 0, z > 0, for n large enough, z < 0, and for n = 1, z > 0. Therefore,

there is n* > 1 such that @ > 0 if and only if n < n*. This proves that g—f > 0 if and only if

* *
y<u,whereu—71u+nu>u
The proof that ¢ = ‘c — o%ﬁb is increasing in v for v < v** and increasing in v for v > v**

where v** < 4, is similar and is omitted. m

Proof of Proposition 9. First, note that given the normal distribution of z, (22) is equivalent

to
[ r
s <1—exp<—012 (h—cl) <s—c _2|_h>>> (1—exp< 1 (c"—h) <s—c ;h>>> > 0.
(A8)

Next the problem of an honest politician can be written as

gleaﬂic—a:vQ—ﬁ(x—i—bf—l— <W—aofﬂb2—K>7r(x)

_ o 1 aB o o 5, _ )_ ﬁ(a+4,6’) _

[uﬁb u<a+ﬁb +<x+a+ﬁ>a+ﬁb +A=x)K)—p" Py (1= (2)).

A-13



Similarly, for a right-wing incument, the bargaining problem is

glgﬁ(—axz—ﬁ(x—bf—k<W—aofﬁb2—K>7r(x)
o o @B o « i 1Bla+4p),,
—[Mﬁb — [ (04+ﬁb +<X+a+6>a+ﬁb +(1—X)K>—Ma+55 (1—m(z)),

The first-order conditions for the bargaining problems of left and right wing incumbents are

(W - K) + uBb?

—2a—2B (z +b)—| —u! (;Tﬂﬁb? i (X + ﬁ) a%gb? +(1-x) K) (f(sr—2) = f(si—2)) =0.
r Bla+4pB)
==l
(A9)
and

(W R K) + uBb?

—2az-28(z —b)—| —ur (;Tﬁﬁw n (X + ﬁ) L (1-x) K) (f (sr =) = f(s1 —2)) = 0.
Bla+4p8)
_lu’l a+p b
(A10)
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In equilibrium, (23), (A9), and (A10) must hold for = h, ¢, ¢", respectively. This implies that

the following three conditions characterize an equilibrium

2
2ah — (W +(1—p) o (af—ﬁb> ) (A11)

x  (f(sr=h)=f(ss—h))=0

aB 72 2
(Wf G ) + ufb
0
_ _ l _ ! 2
20l — 28 (c +b) . (X+ M) 2y (A12)
+(1-x)K
rBlatdp) ;2
—H e

< ()1l

(W oo )+uﬁb2
aofﬁbZ
= 200 =28(C =0 = | | () St (A13)
+(1-x) K
Mzﬁ(zirgﬁ)bz

X (flsr =)= fs1=c"))=0.
Let H C R? be the (open) set defined by
(h,cl,cr> ceH—cd<h<.

We will first prove that the set of signals s that satisfy (A8) is a (closed) interval [s, s,] such

c +h h+c"
2

that —oco < s; < and < 8y < 400 whenever (h,cl,cr) € H. Indeed, as s becomes
close to —oo, the ﬁrst term becomes negative, and arbitrarily large in absolute value (since
the exponent tends to +00), while the second term tends to 0, so the left-hand side of (A8) is
negative. Likewise, as s becomes large and positive, the first term tends to 0 and the second

becomes large and negative, so the left-hand side is negative. At the same time, if we pick

! . . . S
s = # or s = thcT, then one term is positive and the other is zero, so the left-hand side is

positive. It now suffices to prove that the left-hand side of (A8) is a concave function of s. This
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follows by observing that the derivative with respect to s,

i (=)o (% (n=) (s = S52) )y @ e (- (- 229)).

is a decreasing function of s.

We have thus shown that for all (h, d, cT) € H, there are exactly two different solutions to

the equation

¢ (1o ( 5 (0-2) (5= L)) o (1 (B (5 229))) <o

we can denote the lesser of them as s; (h, d, cr) and the greater as s, (h, d, cT).

Denote a = a’%ﬁb. For each p € (O, %), let H, C R? be the compact set given by

—pa < h < pa
(h,Cl,CT)EHp<:> —(1+p)a§cl§_(1—p)a .

(I-pla<c <(1+pla

2
Let us prove that the functions g—;‘%y exp (—(52;1’2) ), where s € {s;,s,}, and z,y € {h, cl,cr}
in all possible combinations (18 totally) are each o (1) as o — oo, provided that (h,c!,c") € H,

for p chosen below. We choose p in the following way. Consider the function

)
)

for s € (%, oo). One can verify that for all s € (%, oo)7

B l—exp(—a(s—i-
B 1—exp(—a(s—

Q (a, )

S— [ —
|
@
»
e}
|
IS
N
V2]
_l’_
NS
—
—

N |Ne

Q(a,s) > 2¢ %" \er® — 1. (A15)

To see this, notice that lims_,%w Q (a,s) = o0 and limg_, 4 @ (a,s) = 1. In addition, if e <

2
In (e_%a —\ 1—6_"‘2)

—a

Since 2% v/e?®> —1 < 1 for all a (with equality achieved if € = 2), we have that Q (a, s) is
bounded from below by 2¢=7"\/e?* — 1 for all a, so (A15) holds.

2, then sg = is a local minimum on (%, +oo), and Q (a, sg) = 2e9%\/ea? — 1.
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Consider now the function

_ B 1_2p1—exp<—a(1—2p)<s+w>>
Q(a,s,p) = 1+2P1—exp<—a(l+2p)(s_@>)

e (-att-20 s+ 20520 ).
a(1-2p)

By continuity, we can choose p* > 0 such that for all p € [0, p*] and for all s > ==,

Q (a,s,p) > eV ea® — 1.
Next, for p € [0, p*] and o > 1 consider the function

_ 1—2p1_eXP<—%a(1—2p) (s+@))
— 1+2P1—exp<—%b(1+2p) (S_M>)

o (Lot (s 2052 ).

Q(a,s,p,0) > 67(%)2 e(%)Z —1> e*(%)Z (E)Q > €_a2§

(where we used the fact that e* > 1+ x for all z > 0 and that o > 1).

Consider now the following function:

) S D) 1 sy

2
h—¢cl 1—exp (—% (c"—h) (S_thcT)) 2

defined on H N {s > %} We can observe that if (h, cl,c") € H,, then the four values,
h—d,— (cl + h) ,¢" —h,h+c" lieon [a (1 —2p),a(l+ 2p)], which implies

2 a

Q (h) cl)crasaa) Z Q(bvs)pu U) Z eia -
o
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We are now ready to estimate 32-3" exp <

9s s—y (S y)

Since s, is the larger root of (A14), consider the functlon

L(s) = (1 ~exp <012 =) <s Cl;—h>)>+ur (1 —exp <12(c7"h) <s h*;))) ;

we then have

95 OL/oa
oxr  OL/Os’

As argued above, 0L/0s is negative at s = s, so consider

67L
0s

1 1
= p'—5 (" — h)exp <02

g

(

Consider the following two possibilities separately.

If u > 64! (so p” > (1~ p) and ! < } (1~ p)), then (since s, > #5= > <3h)

Otherwise, if " < 6! (so p! >

oL

1 T T
1 CA GOV
1 ra 190 al—p
>o2(“3 “3>—a2 21

% (1 — p)), then, substituting for u"/u! from (A14), we get

s

RS (h—cl> (ur (" — h)exp (& (" — h) (s — B52)) ~exp (_012 (h—cl> (8_

pt(h—d)

T e Y

). Suppose, for example, that s = s,.

2

d4h
2

o) (5= ) )t (=)o (5 (=) (s S52)).

)

h—=c) 1—exp (5 (¢ = h) (s

- <3%)

)
)




This implies that, given ¢ > 1 and a2e~?’ < 1, that in both cases

> a”.
9s| = 2108 " € (AL6)

It is straightforward to check (or invoke the symmetry argument) that inequality (A16) would
hold for s = s, as well.

Consider now the derivatives

oL 1 ; 1 ; d+h . 1, h+c"
= Uz(s—h)<uexp<—02<h—c><s— 5 )—i—u exp<02(c—h)(s— 5 >)>,
oL 1 . 1 . )

a ‘“02(8‘0>exp<‘02("‘0><5‘ 2 ))

oL
ocr

We have

1 . d+h pb+ p”
exp <—02 (h — c) <sl i >> < i (A17)
1 , h+cr /*Ll +/*LT
exp ((72 (" —h) <sr - >> < o (A18)
Consequently, for any s € {s;,s,} and = € {h, d, cr}, we have
OL 1
‘ax‘§2(1—u)02|s—x!- (A19)

A-19



To proceed, consider the term |s — z|. Notice that (A17) and (A18) imply that for o large

enough
2 l c
s > —QU—In'u—i_lu,
a K
2 l c
sy < 26;111“:6“.

Let us define k; (o) = 2% and k;, (0) = 2%; they are bounded away from +oc. From (Al4) we

obtain that as ¢ — o0, k; (0) and k, (o) tend to the two solutions of the equation

,ul (1 — exp (— (h — cl> k)) +u" (1 —exp((c"—h)k)),

which are also bounded away from 0 for (h,cl,cr) € H, for p < p for some p small enough.
Let p = min (p*, p). Therefore, there exist positive constants 71 and 79 such that whenever o is
large enough,

[s1] |snl

< ?, ? < T9. (A20)

It is now straightforward to see that for o large enough, we have |s — y| > %, and thus the

(s —y)? 52
exp (‘202 =

following holds:

Hence, for large o:

Oss—y [ (s—u’\| _ |0Ljox||s—yl [ (s—y)’
dr o8 P 202 OL/ds| o3 P 202

20=mgls—alls—sl <<s—y>2>

= T—pn
2103

42 $21
a2e=—?*g2 4 o3

42 5 41
4a2e—2* 52 (12)"0 o3 <

2
a2e— g3

IN

T
g

for some constant 7. Remember that this has been proved for (h, d, cr) € H,,.
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Now consider

Z, h (si, sr)
Z=\1z| = (s1,5)
Z, c (s, 8r)

defined as the functions introduced in (A11) — (A13). We will prove that there exists p € (0, 3)
such that for ¢ large enough, mapping A given by

A(h,d, " =27 <h (sl(h, cl,cr),sr(h,cl,cr)> . (sl(h,cl,cr), sy (h, cl,cr)> " (sl(h,cl,cT),sr(h, cl,cr)))

maps H into H, and is a contraction on H,. First, clearly H, is mapped into H,. Consider next

07y hocl,c™),sr(hacl "
(r(sl( c 8cy)s (h,c',c ))) for

T,y € {h, d, c’”}. Consider, for example, z = 3 = ¢/. The function Z; is obtained from (A12).

the Jacobian of mapping A. It consists of derivatives of the kind

Denote
Ri(d.2) = ~202-28(Z+1)
(W = 2550% = K) + ppi?
| o (B4 (x+a3p) Zatt + (=0 K) | e (lir) = Z0) = £ (51 (L) = 20))
Sy B(zigb’) b2
We have

oR; 7 (sn— 21)* 51— 2 (s1— 21)*
oz, st (\ﬁa?’ P ( 202 V2ro3 P 202

for some constant H, so for large o,

8Z

@——H 83T3T—Zlex _(ST—ZZ)Q —@SZ_ZZGX _(Sl—Zl>2 .
oct oct \/2ro3 P 202 oct \/2ro3 P 202 ’

‘ 8Rl

if o is large enough, then 5. This already implies that 8Zl < 2, the same may be proved
in a similar way for the other derlvatlves. This implies that mapping A is a contraction on H,
for o large enough.

We have thus proved that for o large enough, there exists a unique equilibrium (h, c, ") €

H,. However, for o large enough, A maps any element of H into H), so for large o, there may
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be no other fixed points of mapping A, and therefore no other monotonic equilibria. It remains
to prove that there are no non-monotonic equilibria. However, it is quite easy to see that for
o high enough, politicians’ best responses will lie arbitrarily close to 0, —a’%ﬂb, o%ﬁb for honest
and the two corruptible types, respectively, so there will be no non-monotonic equilibria. This

completes the proof. m

Proof of Proposition 10. Part 1. If u! = 4, then mapping A maps symmetric triples
(—x,0,x) to similar triples. As any such sequence converges to the equilibrium because A is a
contraction for o large enough, this property holds in the equilibrium as well. This also implies
51+ s = 0. Now, inequalities ¢! > —%iﬁb and ¢" < aiiﬁb follow from (A12) and (A13).

Part 2. The equilibrium values of h, ¢!, ¢" are given by the equation

h Zp, (Sl(h, d,c, s.(h,d, cT))
dl—-12z (sl(h, cl,cr),sr(h,cl,d’)) =0.
c’ Z, (sl(h, d,c), sp(h,c, cT))

Now suppose that W increases. To differentiate the implicit function, notice first that if o is
sufficiently large, then the derivatives of Z with respect to any of h,c!,¢" are arbitrarily close
to 0, and thus the matrix of derivatives of the left-hand side with respect to h,c,¢" is close to
unit matrix. To determine the signs, it therefore suffices to differentiate 7, Z;, Z, with respect
to W. Since s;(h,c',c¢") and s,.(h,c,c") do not depend on W explicitly, we only need to look
at the explicit appearances of W on the left-hand sides of (A11)-(A13). These depend on the
signs of f (sr(h, d,c) — x) —f (sl(h, d,c) — x) for ¢ € {h,cl,c’"}.

If o is large enough, then the derivatives of f (s — z) for s € {s;, sy} and x € {cl, h, cr} with
respect to p! and u¢ are negligible. Now, both s; and sj, are increasing in §, as follows from
(A14). More precisely, we need to write the equations for the equilibrium values of s; and sy,
notice that the Z, (s, sp) has an arbitrarily small derivative with respect to 0, and therefore
only the direct inclusion of ¢ in (A14) through u! and p¢ should matter. This, together with
s; < h < sp, implies that h decreases in §. This implies that for all 6, f (sp —¢) — f (s; —¢) > 0,
and therefore ¢ is increasing in 6. As for ¢!, f (sh — cl) —f (sl — cl) < 0 in the neighborhood

of § = 0, and therefore ¢!

is increasing in that neighborhood. However, as § increases enough
so that p! is sufficiently close to 0, then s; will tend to —oo whereas sj, will remain finite. This
means that for such 9§, f (sh — cl) —f (sl — cl) > 0, and ¢ will increase in .

Part 3. The proof is similar to the proof of Part 2 and is omitted. m
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Proof of Proposition 12. The second-period problems are identical to the main case. In the
first period, the maximization problems of honest politicians and corrupt politicians with the

lobby, respectively, are now given by

2
max —az? +§ (Wﬂ' () —(1-—p)a ((&b) (1—-m (x))) ,

—oz:L‘2—B(x—b)2+5(W—ﬂb2—K>7r(x)

ma[gmaﬁ{ 9 ath
P —a (=) (2504 (v 525 ) bt + (L= K) (1= 7 () — 0B (1 — 7 ()

Proceeding as before, the equilibrium is characterized by the two first-order conditions:

—2ah — §Hf <h;c> _—

—2ac—26(c—b)—5(H+R)f<h;6) _ o,

Therefore, p = |h| and g = ‘c — a‘%ﬁb‘ satisfy equations analogous to (17) and (18). As in the
proofs of Proposition 4, we get that p and ¢ increase in §: % > 0 and % >0. m
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